3.358 \(\int \frac {\sqrt {b x^2+c x^4}}{x^{5/2}} \, dx\)

Optimal. Leaf size=254 \[ \frac {2 \sqrt [4]{b} \sqrt [4]{c} x \left (\sqrt {b}+\sqrt {c} x\right ) \sqrt {\frac {b+c x^2}{\left (\sqrt {b}+\sqrt {c} x\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right )|\frac {1}{2}\right )}{\sqrt {b x^2+c x^4}}-\frac {4 \sqrt [4]{b} \sqrt [4]{c} x \left (\sqrt {b}+\sqrt {c} x\right ) \sqrt {\frac {b+c x^2}{\left (\sqrt {b}+\sqrt {c} x\right )^2}} E\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right )|\frac {1}{2}\right )}{\sqrt {b x^2+c x^4}}+\frac {4 \sqrt {c} x^{3/2} \left (b+c x^2\right )}{\left (\sqrt {b}+\sqrt {c} x\right ) \sqrt {b x^2+c x^4}}-\frac {2 \sqrt {b x^2+c x^4}}{x^{3/2}} \]

[Out]

4*x^(3/2)*(c*x^2+b)*c^(1/2)/(b^(1/2)+x*c^(1/2))/(c*x^4+b*x^2)^(1/2)-2*(c*x^4+b*x^2)^(1/2)/x^(3/2)-4*b^(1/4)*c^
(1/4)*x*(cos(2*arctan(c^(1/4)*x^(1/2)/b^(1/4)))^2)^(1/2)/cos(2*arctan(c^(1/4)*x^(1/2)/b^(1/4)))*EllipticE(sin(
2*arctan(c^(1/4)*x^(1/2)/b^(1/4))),1/2*2^(1/2))*(b^(1/2)+x*c^(1/2))*((c*x^2+b)/(b^(1/2)+x*c^(1/2))^2)^(1/2)/(c
*x^4+b*x^2)^(1/2)+2*b^(1/4)*c^(1/4)*x*(cos(2*arctan(c^(1/4)*x^(1/2)/b^(1/4)))^2)^(1/2)/cos(2*arctan(c^(1/4)*x^
(1/2)/b^(1/4)))*EllipticF(sin(2*arctan(c^(1/4)*x^(1/2)/b^(1/4))),1/2*2^(1/2))*(b^(1/2)+x*c^(1/2))*((c*x^2+b)/(
b^(1/2)+x*c^(1/2))^2)^(1/2)/(c*x^4+b*x^2)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.24, antiderivative size = 254, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.286, Rules used = {2020, 2032, 329, 305, 220, 1196} \[ \frac {4 \sqrt {c} x^{3/2} \left (b+c x^2\right )}{\left (\sqrt {b}+\sqrt {c} x\right ) \sqrt {b x^2+c x^4}}-\frac {2 \sqrt {b x^2+c x^4}}{x^{3/2}}+\frac {2 \sqrt [4]{b} \sqrt [4]{c} x \left (\sqrt {b}+\sqrt {c} x\right ) \sqrt {\frac {b+c x^2}{\left (\sqrt {b}+\sqrt {c} x\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right )|\frac {1}{2}\right )}{\sqrt {b x^2+c x^4}}-\frac {4 \sqrt [4]{b} \sqrt [4]{c} x \left (\sqrt {b}+\sqrt {c} x\right ) \sqrt {\frac {b+c x^2}{\left (\sqrt {b}+\sqrt {c} x\right )^2}} E\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right )|\frac {1}{2}\right )}{\sqrt {b x^2+c x^4}} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[b*x^2 + c*x^4]/x^(5/2),x]

[Out]

(4*Sqrt[c]*x^(3/2)*(b + c*x^2))/((Sqrt[b] + Sqrt[c]*x)*Sqrt[b*x^2 + c*x^4]) - (2*Sqrt[b*x^2 + c*x^4])/x^(3/2)
- (4*b^(1/4)*c^(1/4)*x*(Sqrt[b] + Sqrt[c]*x)*Sqrt[(b + c*x^2)/(Sqrt[b] + Sqrt[c]*x)^2]*EllipticE[2*ArcTan[(c^(
1/4)*Sqrt[x])/b^(1/4)], 1/2])/Sqrt[b*x^2 + c*x^4] + (2*b^(1/4)*c^(1/4)*x*(Sqrt[b] + Sqrt[c]*x)*Sqrt[(b + c*x^2
)/(Sqrt[b] + Sqrt[c]*x)^2]*EllipticF[2*ArcTan[(c^(1/4)*Sqrt[x])/b^(1/4)], 1/2])/Sqrt[b*x^2 + c*x^4]

Rule 220

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[((1 + q^2*x^2)*Sqrt[(a + b*x^4)/(a*(
1 + q^2*x^2)^2)]*EllipticF[2*ArcTan[q*x], 1/2])/(2*q*Sqrt[a + b*x^4]), x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rule 305

Int[(x_)^2/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 2]}, Dist[1/q, Int[1/Sqrt[a + b*x^4], x],
 x] - Dist[1/q, Int[(1 - q*x^2)/Sqrt[a + b*x^4], x], x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rule 329

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + (b*x^(k*n))/c^n)^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 1196

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 4]}, -Simp[(d*x*Sqrt[a + c
*x^4])/(a*(1 + q^2*x^2)), x] + Simp[(d*(1 + q^2*x^2)*Sqrt[(a + c*x^4)/(a*(1 + q^2*x^2)^2)]*EllipticE[2*ArcTan[
q*x], 1/2])/(q*Sqrt[a + c*x^4]), x] /; EqQ[e + d*q^2, 0]] /; FreeQ[{a, c, d, e}, x] && PosQ[c/a]

Rule 2020

Int[((c_.)*(x_))^(m_)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> Simp[((c*x)^(m + 1)*(a*x^j + b*
x^n)^p)/(c*(m + j*p + 1)), x] - Dist[(b*p*(n - j))/(c^n*(m + j*p + 1)), Int[(c*x)^(m + n)*(a*x^j + b*x^n)^(p -
 1), x], x] /; FreeQ[{a, b, c}, x] &&  !IntegerQ[p] && LtQ[0, j, n] && (IntegersQ[j, n] || GtQ[c, 0]) && GtQ[p
, 0] && LtQ[m + j*p + 1, 0]

Rule 2032

Int[((c_.)*(x_))^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> Dist[(c^IntPart[m]*(c*x)^FracP
art[m]*(a*x^j + b*x^n)^FracPart[p])/(x^(FracPart[m] + j*FracPart[p])*(a + b*x^(n - j))^FracPart[p]), Int[x^(m
+ j*p)*(a + b*x^(n - j))^p, x], x] /; FreeQ[{a, b, c, j, m, n, p}, x] &&  !IntegerQ[p] && NeQ[n, j] && PosQ[n
- j]

Rubi steps

\begin {align*} \int \frac {\sqrt {b x^2+c x^4}}{x^{5/2}} \, dx &=-\frac {2 \sqrt {b x^2+c x^4}}{x^{3/2}}+(2 c) \int \frac {x^{3/2}}{\sqrt {b x^2+c x^4}} \, dx\\ &=-\frac {2 \sqrt {b x^2+c x^4}}{x^{3/2}}+\frac {\left (2 c x \sqrt {b+c x^2}\right ) \int \frac {\sqrt {x}}{\sqrt {b+c x^2}} \, dx}{\sqrt {b x^2+c x^4}}\\ &=-\frac {2 \sqrt {b x^2+c x^4}}{x^{3/2}}+\frac {\left (4 c x \sqrt {b+c x^2}\right ) \operatorname {Subst}\left (\int \frac {x^2}{\sqrt {b+c x^4}} \, dx,x,\sqrt {x}\right )}{\sqrt {b x^2+c x^4}}\\ &=-\frac {2 \sqrt {b x^2+c x^4}}{x^{3/2}}+\frac {\left (4 \sqrt {b} \sqrt {c} x \sqrt {b+c x^2}\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt {b+c x^4}} \, dx,x,\sqrt {x}\right )}{\sqrt {b x^2+c x^4}}-\frac {\left (4 \sqrt {b} \sqrt {c} x \sqrt {b+c x^2}\right ) \operatorname {Subst}\left (\int \frac {1-\frac {\sqrt {c} x^2}{\sqrt {b}}}{\sqrt {b+c x^4}} \, dx,x,\sqrt {x}\right )}{\sqrt {b x^2+c x^4}}\\ &=\frac {4 \sqrt {c} x^{3/2} \left (b+c x^2\right )}{\left (\sqrt {b}+\sqrt {c} x\right ) \sqrt {b x^2+c x^4}}-\frac {2 \sqrt {b x^2+c x^4}}{x^{3/2}}-\frac {4 \sqrt [4]{b} \sqrt [4]{c} x \left (\sqrt {b}+\sqrt {c} x\right ) \sqrt {\frac {b+c x^2}{\left (\sqrt {b}+\sqrt {c} x\right )^2}} E\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right )|\frac {1}{2}\right )}{\sqrt {b x^2+c x^4}}+\frac {2 \sqrt [4]{b} \sqrt [4]{c} x \left (\sqrt {b}+\sqrt {c} x\right ) \sqrt {\frac {b+c x^2}{\left (\sqrt {b}+\sqrt {c} x\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right )|\frac {1}{2}\right )}{\sqrt {b x^2+c x^4}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.01, size = 55, normalized size = 0.22 \[ -\frac {2 \sqrt {x^2 \left (b+c x^2\right )} \, _2F_1\left (-\frac {1}{2},-\frac {1}{4};\frac {3}{4};-\frac {c x^2}{b}\right )}{x^{3/2} \sqrt {\frac {c x^2}{b}+1}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[b*x^2 + c*x^4]/x^(5/2),x]

[Out]

(-2*Sqrt[x^2*(b + c*x^2)]*Hypergeometric2F1[-1/2, -1/4, 3/4, -((c*x^2)/b)])/(x^(3/2)*Sqrt[1 + (c*x^2)/b])

________________________________________________________________________________________

fricas [F]  time = 0.67, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {\sqrt {c x^{4} + b x^{2}}}{x^{\frac {5}{2}}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^4+b*x^2)^(1/2)/x^(5/2),x, algorithm="fricas")

[Out]

integral(sqrt(c*x^4 + b*x^2)/x^(5/2), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {c x^{4} + b x^{2}}}{x^{\frac {5}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^4+b*x^2)^(1/2)/x^(5/2),x, algorithm="giac")

[Out]

integrate(sqrt(c*x^4 + b*x^2)/x^(5/2), x)

________________________________________________________________________________________

maple [A]  time = 0.03, size = 202, normalized size = 0.80 \[ \frac {2 \sqrt {c \,x^{4}+b \,x^{2}}\, \left (-c \,x^{2}+2 \sqrt {\frac {c x +\sqrt {-b c}}{\sqrt {-b c}}}\, \sqrt {2}\, \sqrt {\frac {-c x +\sqrt {-b c}}{\sqrt {-b c}}}\, \sqrt {-\frac {c x}{\sqrt {-b c}}}\, b \EllipticE \left (\sqrt {\frac {c x +\sqrt {-b c}}{\sqrt {-b c}}}, \frac {\sqrt {2}}{2}\right )-\sqrt {\frac {c x +\sqrt {-b c}}{\sqrt {-b c}}}\, \sqrt {2}\, \sqrt {\frac {-c x +\sqrt {-b c}}{\sqrt {-b c}}}\, \sqrt {-\frac {c x}{\sqrt {-b c}}}\, b \EllipticF \left (\sqrt {\frac {c x +\sqrt {-b c}}{\sqrt {-b c}}}, \frac {\sqrt {2}}{2}\right )-b \right )}{\left (c \,x^{2}+b \right ) x^{\frac {3}{2}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c*x^4+b*x^2)^(1/2)/x^(5/2),x)

[Out]

2*(c*x^4+b*x^2)^(1/2)/x^(3/2)/(c*x^2+b)*(2*((c*x+(-b*c)^(1/2))/(-b*c)^(1/2))^(1/2)*2^(1/2)*((-c*x+(-b*c)^(1/2)
)/(-b*c)^(1/2))^(1/2)*(-1/(-b*c)^(1/2)*c*x)^(1/2)*EllipticE(((c*x+(-b*c)^(1/2))/(-b*c)^(1/2))^(1/2),1/2*2^(1/2
))*b-((c*x+(-b*c)^(1/2))/(-b*c)^(1/2))^(1/2)*2^(1/2)*((-c*x+(-b*c)^(1/2))/(-b*c)^(1/2))^(1/2)*(-1/(-b*c)^(1/2)
*c*x)^(1/2)*EllipticF(((c*x+(-b*c)^(1/2))/(-b*c)^(1/2))^(1/2),1/2*2^(1/2))*b-c*x^2-b)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {c x^{4} + b x^{2}}}{x^{\frac {5}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^4+b*x^2)^(1/2)/x^(5/2),x, algorithm="maxima")

[Out]

integrate(sqrt(c*x^4 + b*x^2)/x^(5/2), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {\sqrt {c\,x^4+b\,x^2}}{x^{5/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*x^2 + c*x^4)^(1/2)/x^(5/2),x)

[Out]

int((b*x^2 + c*x^4)^(1/2)/x^(5/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {x^{2} \left (b + c x^{2}\right )}}{x^{\frac {5}{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x**4+b*x**2)**(1/2)/x**(5/2),x)

[Out]

Integral(sqrt(x**2*(b + c*x**2))/x**(5/2), x)

________________________________________________________________________________________